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H. TVERBERG

1. Let "ra-set" mean a set of ra points in Rn. We shall say that an
m-set is r-divisible if it can be divided into r sets in such a way that the
convex hulls of the r sets have a non-empty intersection. B. Birch [1]
conjectured

THEOREM 1. Any (r(n + 1) — n) -set is r--divisible,

and proved it in the case n = 2. In the case n > 2, Birch proved a weaker
result, with r(n+l) — n replaced by rn(n+l) — n2 — n+ 1. This was, for
most r and n, an improvement of the earlier result, by R. Rado [2], that
any f (r — 2) 2n + n + 2\ -set is r-divisible.

The case r = 2 was proved by J. Radon [3], and used by him for proving
Helly's theorem. The reader is referred to [4] for a discussion of Radon's
and Helly's theorems and related questions.

In order to see that Theorem 1 is best possible, i.e. that some (in fact
almost all) (r(n+1) — n— lVsets are not r-divisible we consider an
(r(n+l) — n—l) -set Q., the points of which are algebraically independent,
and a partition of Q. into sets Q1} ..., Qr. (We say that m points are
algebraically independent if their coordinates are mn real numbers, alge-
braically independent over the field of rational numbers.) It suffices to
show that the intersection of Llt ..., Lr, the linear hulls of Ql3 ..., Clr, is
empty. Hence assume that Lxr\...r\Lr^^>. This is a purely algebraic
property of Q. and the given partition of Q., and so, by the algebraic inde-
pendence in Cl, we conclude that whenever sets Qx', ..., Q.r' are given, with
linear hulls L±, ..., Lr', then L{r\...r\Lr'^<j>, provided, for each i, Q/
is equipollent to Q̂  and L^ has the same dimension as L^ (Strictly
speaking, this statement is correct only if interpreted in real protective
n-space.)

One now gets the desired contradiction by choosing first r non-inter-
secting (also at infinity) linear spaces Lx', ..., Lr' such that, for each i,
dimL{ — dimLi} and then, in each L/, a set Q/, equipollent to Q,^ the
linear hull of which is Z-/. The feasibility of this is granted by the inequality

codim Lx + ... -f codim Lr ̂  (n + 1 — (number of points in Qx) J + ...

Below we shall give a proof of Theorem 1 in its full generality. The
author would like to thank Birch and Rado for stimulating discussions
on a very early version of this paper.
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2. We first prove three lemmas.

LEMMA 1. Let Vx, ..., Vs be linear subspaces of n-space, none of which
contains a given point A. Let PĴ  be the space spanned by F^ and A and
assume that, for every i, W{ intersects F 1 n . . . n F i _ 1 n F i + 1 n . . . n F , in a
single point Bx. Assume furthermore that codim V1 + ... + codim Fs *= n + 1 .
Then, for some i, V^ does not separate A and B^

We start with the case when codim Vx =. . . = codim Fs = l. By our
assumptions 5 then equals n + 1, and each space W^ equals the full n-space.
Thus each point Bi is the intersection of the hyperplanes Vj} j^i. We
may assume the points BX) ..., Bn+1 to be linearly independent, so that
they form the basis of a barycentric coordinate system in n-space. (If Bx,
say, is in the linear hull of B2, ..., Bn+1, Bx belongs to Vv as B2, ..., Bn+X are
all in Vx, but then V1 does not separate A and Bx, and the lemma holds.)
In this system A has n+1 coordinates, the sum of which equals 1. Thus
some coordinate, say the first one, must be positive. This means that A
and Bx are not separated by the hyperplane that is spanned by 2?2> • • • 5 Bn+i-
This latter hyperplane is, however, identical to Vv

If, say, codim V1>1, then Wx is a proper subspace of ?i-space. Reason-
ing by induction, we may thus assume that Lemma 1 holds in Wv We
apply it to V1r>iW1, ..., F s o 1^ and A. As the modular law holds in the
lattice of all linear subspaces of a linear space, we see that the space spanned
by V^ Wx and A equals the intersection with Wx of the space spanned by
Vi and A, i.e. of W^ Now we have

Thus it only remains to compute the sum of the codimensions in W1 of
V1r^W1, ..., V.r^W^ I f*>l , then

n = codim Bx ̂  codim Vir\W1 + codim F2 + ...

4- codim Vi_x + codim Vi+1 + ... + codim Fs

= codim Fj r\ Wx + n — codim Wx — codim Vi ^ n.

Hence codim Vir\W1 = codim W1 + codim Vis which means that the
codimension of Vtr\ Wx in Wx equals codim F^ The sum of the codimen-
sions in Wx of Vxr\ Wx, ..., Vsr\Wx thus equals

1 + (n +1 - codim Vx) = 1 -I-dim Wx.

We conclude that, for some i, Vir\Wx does not separate A and B^ But
then Vt does not separate A and B^

LEMMA 2. An m-set Q. tliat is the limit of a sequence £lx, Q2> ••• °f
r-divisible m-sets, is itself r-divisible.
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We put £J, = {Pa, ..., Pj)n\, O = {Pv ..., Pm}. Our assumptions are
that

= Pfc, k=l,...,m, (1)

and that for each j there exists a partition of the set {1, ..., m] such that
the convex hulls of the sets obtained by partitioning Qj in the corres-
ponding way, have a non-empty intersection. Assume that for each j
we have chosen a point 223 in that intersection. Then there must be a
partition of {1, ..., m) into sets r\, ..., Tr such that, for infinitely many j ,

i^e convex hull ({P3&| ^ G T J ) , i=l,...,r. (2)

We may as well assume that (2) holds for all j , as no harm is done by
replacing the originally given sequence of m-sets by a subsequence. The
relations (1) and (2) show that the sequence R1} R2, ... is bounded, hence
contains a convergent subsequence. We may as well assume Rl3 R2, •••
itself to be convergent, towards a point R. Then, by (1) and (2),

Re convex hull ({Pk \ ke I\}), i = 1, ..., r,

which proves the lemma.

LEMMA 3. Let Q, Pl3 ..., PN (N = r(n+l) — nj be algebraically inde-
pendent points. Then {Q, P2, ..., PN} is r-divisible if {P1} ..., PN} is
r-divisible.

For each real number t, put Cl(t)= {{l-t) Px + tQt P2, ..., PN}. We
assume that Q(0) is r-divisible, and we shall prove that Cl(l) is r-divisible.
We do this by proving that the set

T={t\Cl(t) is r-divisible}

is both open and closed. T, being non-empty, must then consist of all
real numbers; in particular T must contain the number 1.

By Lemma 2, T is closed; hence it remains to prove that T is open.
Let now t0 be an arbitrary point of T. We make a study, first of the set
Gl{t0), and then of the sets Cl(t) when t is near t0.

As toe T, there is a point L and a partition of Cl{tQ) into sets

such that L is in the convex hull of each Q.^ If some Qf consists of more
than n+1 points, there is a subset Q/ of Qi5 containing only n+ 1 points
and having L in its convex hull, by Caratheodory's theorem (see [4]).
This means that we may assume each Q.t to contain nt +1 points, nt ^ n,
because N<r(n+1) +1.

Now, when i > 1, the convex hull of £^ is a non-degenerate ^-simplex ai,
by the algebraic independence of the points in Q^ Li} the linear hull of Q{,
is thus an %-space. If Lx is not an ^-space, i.e. if ax is a degenerate
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%-simplex, Lx must be the (%—l)-space H that is spanned by the
nx algebraically independent points P2, ..., Pni+V Then the point
(1 —10) Px + lQ Q is in H, and we get

Le axr\... r\ar <=• Hr\ L2r\... r\ Lr.

But the linear spaces H, L2, ..., Lr are algebraically independent and the
sum of their codimensions equals

rn— ((n1—l) + n2+ ...+nr) =rn+l — (N — r) =

This is a contradiction, and we conclude that also ax is non-degenerate.
Let Q1{t)={{l-t)P1 + tQ,P2,...,Pni+1}. Then there is an open

interval Ix3tQ, such that when tellt Q1(i) has a convex hull a^t) which is
a non-degenerate ^-simplex, with linear hull Lx{t). Let L(t) denote the
space Zr1(«)r^Zr2o...rkZrr. What can be said about £(£)? If K is the
linear hull of {Q, Px, ..., Pni+1}, then L^czK and, accordingly,
L(t)<^Kr\L2r\...r\Lr for all values of t. If nx = n K is all of w-space
and the sum of the codimensions of L2, -.., Lr equals n. Thus L(t) is a
single point, which is independent of t. If nx < n, K is an {nx + l)-space,
algebraically independent of L2, ..., Lr. Thus K r\ L2 r\... r\ Lr is a 1 -space,
a line M. This means that L(t0), if it is not the single point L, equals M.
Now L(O)eM, and hence, if L(tQ) = M, L(O)eL^)r^L^O).f Further,
L(0) is not in H, the linear hull of {P2, •••, Pni+i}> a s w e have seen that
Hr\L2r\...r\Lr is empty. This shows that the space Z-1(^0)r»L1(0), which
clearly contains H, must contain H strictly, i.e. L1(tQ) = Ll(0). Similarly,
we find that ^(^o) = -^i(l)- But then Qe Lx(l) = 2^(0), which is impossible,
as Q is algebraically independent of the points in H1(0) (remember that

Hence L(t0) consists of the point L only. Furthermore, there is an
open interval I2^I1} with toel2, such that, for all t in I2, L(t) is a single
point, depending continuously on t. Actually,

where /3 is the barycentric coordinate of L(0) with respect to Px in the
system with basis ^(O) and a is the barycentric coordinate of L{\) with
respect to Q in the system with basis O1(l).

Let us prove that t0 is an interior point of T. The easier case is when L
is in the interior of each of the simplices alt ..., ar. Then, by continuity,
t0 belongs to an open interval / 3 c / 2 > such that when tel5,

L(t)e ax(t) r\a2r\...

Thus, in this case, Cl(t) is r-divisible when te I3. Assume now that L is on

f Note that L(0) is a single point, because £i(0), La, ... , LT are algebraically inde-
pendent spaces, the sum of the codimensions of which equals n. Likewise L(l) is a single
point.
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the boundary of one of the simplices, e.g. aa. Then L is on some (na — 1 )-face
of aa, the opposite vertex of which is, say, Pb. [Note that, if a = 1, L cannot
be on that face of ax which is opposite to (1 —10) Px + t0 Q> a s we have seen
that Hr\L2r\...r\Lris empty.] The number b, which also determines a,
of course, is uniquely determined as we can see in the following way.
Assume, namely, that L is also on some other face, the one opposite Pc,
say, of some simplex ad (where maybe d = a). We then look at the sets
which are obtained from {Q, Px, ..., Pni+1}, Q>2> ••-, &r by taking away Pb

and Pc. The sum of the codimensions of the linear hulls of these sets
equals n+1 (n + 2 if nx = n and b>n+l, on+1), and so, by algebraic
independence, they do not intersect, whereas we have assumed them all
to contain L. This contradiction shows the uniqueness of b, so that not
only does L belong to the boundary of exactly one simplex, namely aa,
but L is also in exactly one {na— l)-face, let us call it rb, of aa. Thus L
is an inner point of rb. This can also be expressed as follows: In the space
La, aa is the intersection of na+\ closed half-spaces. L belongs to the
interior of all but one of these. The remaining one has L on its boundary,
which is the hyperplane nb spanned by rb.

By continuity, the results above yield the existence of a neighbourhood
J4, of tQ, 74 cr /2J such that, when te /4, the following is true. L(t) is in each

of the simplexes crx(t), a2, •-., or, except possibly aa(crx(t) if a = 1J. L(t) is

in each of the half-spaces whose intersection is va(oi{t) if a= l j , except
possibly the one that has Pb in its interior.

This means that for each t in 74, a sufficient condition for Cl(t) to be
/•-divisible is that the space Trb(t) (the one spanned by Q.a — {Pb} if a > 1 and
by Q^t)— {Pb} if a= 1) does not separate L(t) and Pb.

Till now we have only been considering one special partition of £l(tQ).
There are, however, certain other partitions that are worthy of consider-

ation. Namely, let a; (# a) be such that nx < n. Then each of the sets
Cllt ..., Qx\j{Pb}, ..., Cla- {Pb}, ..., Qr contains less than n + 2 points,
and the convex hulls of these sets all contain the point L. L is on the
boundary of one of these hulls, namely that of O.X\J {Pb}. This allows us
to conclude that there is a neighbourhood l£ of tQ, such that, for each t in
/4

X a sufficient condition for Q,(t) to be r-divisible is that the space Lx

lLi{t) if x= l) does not separate LFty) and Pb. Here Lx(t) is the inter-
section of the linear hulls of the sets obtained from

on replacing the point (l — to)P1 + tQQ by the point (1 — t) Px4-tQ.
Let now I5 be the intersection between 74 and the neighbourhoods

/4
xi, /4

X2, . . . . Then, if t is in 75, we can apply Lemma 1 to the spaces
TTb(t), LXi, LXi, ... if nx = n or a = 1 , or to -nb{t), Lx{t), L^, ... if nx<n and
a > 1, and to the point Pb. It is clear that the conditions of the lemma are
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satisfied, the points Bi being the points L{t), Lxi(t), LXt*[t), . . . . The con-
clusion of the lemma then states that at least one of our sufficient conditions
for Q.(t) to be r-divisible is satisfied, and Lemma 3 is proved.

Theorem 1 itself is now an almost immediate consequence of the
Lemmas 2 and 3. We choose an r-divisible JV-set Q.1} (N = r{n + l) — n\,
the points of which are algebraically independent. We may, for instance,
let D.x consist of a point and the vertices of r — 1 w-simplices containing that
point. If an JV-set Q, is given, we can find a sequence Q1? D2, ... of JV-sets,
converging towards Q,, and having the property that £J^£) i + 1 is, for all i,
an (N+ l)-set of algebraically independent points. By Lemma 3, and the
r-divisibility of Q1} Q2 is r-divisible. Lemma 3, applied once more, then
shows that Cl3 is r-divisible, etc., whereupon Theorem 1 follows by Lemma 2.

THEOREM 2. For any mw-f-1) — ii\-set Q. there exists a point R such
that any closed half-space containing R contains at least r points from Q..

This theorem, which is a special case of a theorem by R. Rado [5],
deserves its place here. Indeed, it was the prospect of giving the following
transparent proof of Theorem 2 that first made the author conjecture
and try to prove Theorem 1.

By Theorem 1, there are disjoint sets Q,1, ..., Q,r, the union of which is £1,
and there is a point R that belongs to the convex hull of each set Q.^ Any
closed half-space containing R will then contain at least one point from each
set Qi} and thus at least r points from Q..
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